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Abstract

Routine (i.e., daily to weekly) monitoring of surface energy fluxes, particularly evapotranspiration (ET), using satellite observations of

radiometric surface temperature has not been feasible at high pixel resolution (i.e., f 101–102 m) because of the low frequency in satellite

coverage over the region of interest (i.e., approximately every 2 weeks). Cloud cover further reduces the number of useable observations of

surface conditions resulting in high-resolution satellite imagery of a region typically being available once a month, which is not very useful

for routine ET monitoring. Radiometric surface temperature observations at f 1- to 5-km pixel resolution are available multiple times per

day from several weather satellites. However, this spatial resolution is too coarse for estimating ET from individual agricultural fields or for

defining variations in ET due to land cover changes. Satellite data in the visible and near-infrared wavelengths, used for computing vegetation

indices, are available at resolutions an order of magnitude smaller than in the thermal-infrared, and hence provide higher resolution

information on vegetation cover conditions. A number of studies have exploited the relationship between vegetation indices and radiometric

surface temperature for estimating model parameters used in computing spatially distributed fluxes and available moisture. In this paper, the

vegetation index–radiometric surface temperature relationship is utilized in a disaggregation procedure for estimating subpixel variation in

surface temperature with aircraft imagery collected over the US Southern Great Plains. The disaggregated surface temperatures estimated by

this procedure are compared to actual observations at this subpixel resolution. In addition, a remote sensing-based energy balance model is

used to compare output using actual versus estimated surface temperatures over a range of pixel resolutions. From these comparisons, the

utility of the surface temperature disaggregation technique appears to be most useful for estimating subpixel surface temperatures at

resolutions corresponding to length scales defining agricultural field boundaries across the landscape.
Published by Elsevier Science Inc.
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1. Introduction used coarser resolution satellite data available on a daily or
Estimation of field scale (i.e., length scales f 101–102

m) evapotranspiration (ET) has been achieved using high

spatial but low temporal resolution satellite data from the

Land remote-sensing satellite Thematic Mapper (Landsat

TM) and the Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) (e.g., French, Schmugge,

& Kustas, 2002; Moran et al., 1996). However, given the

long repeat cycle of these satellites (16 days), such methods

are not well-suited for routine ET estimation. Others have
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more frequent basis from the Advanced Very High Reso-

lution Radiometer (AVHRR) and Geostationary Orbiting

Environmental Satellite (GOES) in an attempt to achieve

routine ET monitoring (e.g., Mecikalski, Diak, Anderson, &

Norman, 1999; Seguin, Lagouarde, & Saranc, 1991). The

pixel resolution of these satellites, however, is f 1 to 5 km,

meaning that the ET estimates represent averages over areas

of f 1 to 25 km2. Agricultural fields in the Southern Great

Plains are typically on the order of 102 to 103 hectares or

10� 1 to 100 km2 (Jackson et al., 1999); hence, the coarser

pixel resolution data cannot be used to discriminate ET of

individual fields.

From a more global perspective, Townshend and Justice

(1988) degraded Landsat satellite imagery collected over a



Table 1

Nominal satellite pixel resolutions for normalized difference vegetation

index (NDVI) and radiometric surface temperature (TR)

Satellite NDVI pixel

resolution (m)

TR pixel

resolution (m)

ASTER 15 90

AVHRR 1100 1100

GOES 4000 4000

Landsat-5 30 120

Landsat-7 30 60

MODIS 250 1000
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variety of landscapes to proposed pixel resolutions (250 m

to 4 km) of the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) and show that for accurate assessment of

land cover changes, a pixel resolution of 500 m or less is

necessary. They also find that even though at the 1-km pixel

resolution, land use/land cover change is detected, defining

the areal extent of such changes will often be unreliable.

With land use and land cover changes, there can be

significant changes in surface energy balance and ET, which

can be monitored with radiometric surface temperature

(Kustas & Norman, 1996). However, to monitor such

changes on a routine basis requires the higher temporal

frequency-coarser resolution thermal-infrared data to be at

the 250- to 500-m pixel size as suggested by Townshend

and Justice (1988).

This deficiency can be addressed by using the functional

relationship between a vegetation index and radiometric

surface temperatures. This relationship has been exploited

by other remote sensing-based energy balance modeling

schemes for constraining/defining model variables/parame-

ters (e.g., Carlson, Gillies, & Perry, 1994; Gillies & Carlson,

1995; Moran, Clarke, Inoue, & Vidal, 1994; Price, 1990).

With a vegetation index such as the Normalized Difference

Vegetation Index (NDVI), which is often available at finer

pixel resolution than radiometric surface temperature (TR),

there is potential to make use of the NDVI–TR relation to

derive TR at the NDVI pixel resolution.

A procedure for disaggregating TR to the NDVI-pixel

resolution (DisTrad) is described and evaluated using air-

borne remote sensing data collected during the 1997 South-

ern Great Plains Experiment (SGP97) conducted in

Oklahoma, USA. We focus on a single day during this

experiment, where there was significant heterogeneity in TR
due to large spatial variation in moisture and vegetation

cover conditions across the landscape. The TR and NDVI

data are aggregated from a base resolution of 24 m to 96,

192, 768, and 1536 m. The DisTrad procedure is applied to

96- and 192-m resolution data for estimating TR at 24 m.

This represents using DisTrad with TR observations from

ASTER or Landsat TM at f 102-m pixel resolution and

estimating TR (T̂R) at the resolution of NDVI observations

from these instruments, namely f 101 m. The DisTrad

procedure is also applied to 768- and 1536-m resolution

data for estimating TR at 192 m. This represents application

of DisTrad to TR observations bracketing AVHRR and

MODIS at f 103-m pixel resolution and estimating TR
(T̂R) at the NDVI pixel resolution of MODIS, namely

f 102 m. In Table 1, the NDVI and TR pixel resolutions

are listed for the ASTER, AVHRR, GOES, Landsat, and

MODIS.

In addition, a remote sensing-based energy balance

model developed to use both coarse and fine resolution

remotely sensed data, called the Disaggregated Atmosphere

Land Exchange Inverse (DisALEXI) model, is applied to

both TR and T̂R. The DisALEXI model has been used with

the high temporal resolution of GOES and high spatial
resolution of the airborne data collected during SGP97 for

estimating heat fluxes on the 101–102 m scale without

requiring any local observations (Norman et al., submitted

for publication). The results of the intercomparisons in heat

flux estimates using both TR and T̂R are analyzed and

discussed.
2. Methodology

2.1. Disaggregation procedure for radiometric surface

temperature (DisTrad)

The DisTrad technique is based on fitting a least-squares

expression between NDVI (the dependent variable) and

radiometric temperature (the independent variable) after

NDVI has been aggregated to the coarser TR resolution.

To more clearly illustrate the DisTrad approach, the proce-

dure is used to disaggregate TR from 96- to 24-m pixel

resolution.

The first step is to select a subset of pixels from the scene

where NDVI is most uniform within the 96-m aggregated

pixels. By using the original 24-m resolution NDVI data

(NDVI24), the coefficient of variation (CV, the standard

deviation divided by the mean) is computed among the

4� 4 pixels (16 pixels in total) that make up each 96-m

NDVI pixel, (NDVI96). The NDVI96 pixels are divided into

several groups/classes, namely, 0 < NDVI96 < 0.2 (sparse

canopy cover/bare soil), 0.2 <NDVI96 < 0.5 (partial canopy

cover) and NDVI96>0.5 (high/full canopy cover); then a

fraction (f 1/4) of pixels having the lowest CV are selected

from each class. By isolating pixels with relatively uniform

cover at the 96-m scale, the relation derived between TR and

NDVI at 96 m should more closely resemble the relations at

higher resolutions. Moreover, subsetting by cover class

promotes higher dynamic range in the resulting TR–NDVI

distributions.

Next, a least-squares fit is performed relating TR96 and

NDVI96 values associated with this subset of ‘‘uniform’’

pixels using the following expression:

T̂R96ðNDVI96Þ ¼ aþ bNDVI96 þ cNDVI296 ð1Þ

A linear equation (c = 0) between TR96 and NDVI96 may be

more suitable in some cases, particularly when the range in



Table 2

Radiometric temperature statistical results between subpixel estimates of TR
at 192- and 24-m resolution (i.e., T̂R192 and T̂R24) using DisTrad and

UniTrad versus observed values, namely, TR192 and TR24 for the four cases

described in the text
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TR96 and NDVI96 values is limited. In principle, Eq. (1)

could be used to estimate 24-m TR, T̂R24, directly by

replacing NDVI96 with NDVI24. However, this would

neglect effects of variations in soil moisture across the

image scene because the least-squares regression, by defi-

nition, reflects only average conditions.

Spatial variability due to soil moisture effects can be

incorporated into the sharpened thermal image by adjusting

each 24-m pixel by the deviation from the regressed temper-

ature observed at 96 m:

DT̂R96 ¼ TR96 � T̂R96 ð2Þ

Then, for each ith 24-m pixel within the 96-m pixel

(where i= 1,2,3. . .16), T̂R24 is computed via

T̂R24ðiÞ ¼ T̂R96ðNDVI24ðiÞÞ þ DT̂R96 ð3Þ

where the first term on the right-hand side is evaluated using

Eq. (1) with the NDVI24 value at that pixel, and the second

term accounting for deviations from the mean is evaluated

from Eq. (2).

2.2. Disaggregation of the heat fluxes using DisALEXI

Norman et al. (submitted for publication) describe in

detail the DisALEXI approach using the same data set as

the present study. In brief, DisALEXI is driven by ALEXI

output of regional air temperature at 50 m using 5-km

GOES TR observations at two times during the morning

period (nominally 1.5 and 5.5 h after local sunrise). Details

of ALEXI are given in Anderson et al. (1997) and Meci-

kalski et al. (1999). Both ALEXI and DisALEXI make use

of the two-source energy balance model described by

Norman et al. (1995) and Kustas and Norman (1999).

The 50-m air temperature, derived from ALEXI, is then

applied in the DisALEXI scheme. The high-resolution

NDVI and land use with the corresponding TR observation

is used in the two-source energy balance model to derive

pixel-based aerodynamic resistances from the soil, vegeta-

tion, and atmosphere. Comparisons between DisALEXI

output of the fluxes over the SGP97 region and tower-

based flux observations indicate that differences are typi-

cally within measurement uncertainties, namely f 50 W

m� 2 (Twine et al., 2000).

Case DisTrad UniTrad

RMSEa

(C)

R2 RMSE/r RMSE

(C)

R2 RMSE/r

1 1.61 0.63 0.61 2.26 0.26 0.86

2 1.35 0.74 0.51 1.61 0.48 0.61

3 2.07 0.63 0.62 2.07 0.62 0.62

4 1.84 0.70 0.55 1.64 0.76 0.49

aEquation for computing RMSE:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðMi � OiÞ2

n

vuuut

where Mi =modeled TR and Oi= observed TR.
3. Data

Details of the SGP97 study are described by Jackson et

al. (1999). There is also a description of the experiment and

all measurement activities provided on the World Wide Web

(http://hydrolab.arsusda.gov/sgp97/). The experimental

period for SGP97 ran from mid-June to mid-July 1997.

The region contains a relatively dense network of meteoro-

logical stations, the Oklahoma Mesonet (Brock et al., 1995).

The wind speed observations for all Mesonet stations are

available at the WMO recommended 10 m above ground

level (agl) and air temperature at 1.5 m with some stations
also having an air temperature measurement at 9 m agl.

level (agl) and air temperature at 1.5 m with some stations

also having an air temperature measurement at 9 m agl.

Details of the measurements and quality control of the

data are described by Shafer, Fiebrich, Arndt, Fredrickson,

and Hughs (2000). The remotely sensed and surface flux

data used in this study come from one of the three

intensively monitored experimental sites, the USDA-ARS

Grazinglands Research Facility near El Reno, OK.

3.1. Remote sensing data

Both the high temporal resolution remote sensing

(GOES) and the high spatial resolution remote sensing data

(aircraft) were available during SGP97. The remote sensing

survey used in this analysis was conducted several days

after a heavy rainfall event (f 6 cm) that occurred over the

El Reno area on June 28, 1997, day of year (DOY) 179.

With a general drying trend following this event, aircraft-

based remote sensing observations were flown on DOY 183

over the nominal period of 1030–1100 Central Standard

Time. During the aircraft mission, measurements from a

nearby Mesonet station gave solar radiation c 900 W m� 2

and air temperature of 31 jC under relatively light winds

(f 2 m s� 1). The spatial variability in surface soil moisture

conditions and surface temperature in the region was rela-

tively high on this day due to rapid drying of the bare soil/

winter wheat fields (French, Schmugge, & Kustas, 2000a;

Norman et al., submitted for publication).

3.2. High temporal resolution data

GOES observations of radiative surface temperatures are

available every 30 min at f 5-km spatial resolution. These

surface temperatures were used with early-morning sound-

ings, on-site estimates of canopy characteristics, and sur-

face-station observations of wind speed to estimate surface

 http:\\www.hydrolab.arsusda.gov\sgp97\ 
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energy fluxes using ALEXI. Details of implementing GOES

with ALEXI and DisALEXI are given in Mecikalski et al.

(1999) and Norman et al. (submitted for publication),

respectively.
Fig. 1. (a) The NDVI–TR relationship at 192-m pixel resolution with Eq. (1) fit to t

24-m pixel resolution with Eq. (1) fit to the 192- and 96-m pixel resolution da

comparison to (b) at 24-pixel resolution, there is a noticeable reduction in scatter
3.3. High spatial resolution data

High-resolution radiometric surface temperature came

from the airborne Thermal Infrared Multispectral Scanner

Environment 85 (2003) 429–440
he 768- and 1536-m pixel resolution data. (b) The NDVI–TR relationship at

ta. (c) A plot of the NDVI–TR relationship at 96-m pixel resolution. In

between NDVI and TR.



Fig. 1 (continued).

W.P. Kustas et al. / Remote Sensing of Environment 85 (2003) 429–440 433
(TIMS), while visible–near infrared imagery from the

Thematic Mapper Simulator (TMS) was used to create an

NDVI and land use map for the region (French et al.,

2000a). The TIMS instrument (Palluconi & Meeks, 1985)

is a six-channel scanner operating in the thermal infrared (8

to 12 Am) region of the electromagnetic spectrum, while

TMS mimics the Landsat TM visible and near-infrared

bands. Both sensors were flown on a DOE Cessna Citation

aircraft at f 5 km agl, which provided radiometric surface

temperature and NDVI at 12-m pixel resolution. The El

Reno flight lines provided coverage of an area approxi-

mately 8 km north–south by 28 km east–west with actual

data acquisition time taking less than 5 min. French et al.

(2000a,b) provide further details concerning the processing

of these data, including correction for emissivity and atmos-

pheric effects. The 12-m TIMS and TMS data were aggre-

gated to 24 m to reduce misregistration errors between the

two sensors. This spatial averaging also reduced variability

in surface temperature caused by temporal fluctuations

inherent in radiometric surface temperature measurements

since the magnitude of these fluctuations is attenuated with

pixel aggregation (Seguin et al., 1999). To simulate as

closely as possible how sensors integrate component radi-

ances from a composite scene at coarser pixel resolutions,

aggregation was performed with radiances in the different

wavebands. The 24-m radiance data were then further

aggregated to 96, 192, 768, and 1536 m, serving as proxies

for real observations at these lower resolutions.
4. Results and discussion

4.1. Radiometric surface temperature estimation

The root mean square error (RMSE) statistic (Willmott,

1982), defined in Table 2, was used to assess the level of

agreement between observed and estimated TR using the

DisTrad procedure. In addition, the ratio of RMSE to the

standard deviations of the observations, r, (RMSE/r) was
computed, which provides a relative measure of model

performance. A value of RMSE/r f 1 indicates poor agree-

ment between model predictions and observations, whereas

RMSE/r]0.5 suggests the scheme is capable of estimating

values in satisfactory agreement with observations. With

certain assumptions concerning the statistical distributions

of the variables, the RMSE/r ratio is related to the coefficient

of determination, R2, namely, f 1�R2 (Snedecor &

Cochran, 1980); since widely used, the R2 statistic is also

reported.

In addition, to gain better insight into the utility of the

DisTrad approach, comparison is also made with the ‘‘con-

trol case’’ where all NDVI subpixels, NDVI(i), comprising

the coarser resolution TR pixel have the same TR value. In

other words, Eq. (3) is reduced to

T̂R24ðiÞ ¼ TR96 ð4Þ
This will be called the UniTrad approach, which assumes a

uniform subpixel TR field (i.e., all 24-m pixel TR values



Fig. 2. (a) T̂R192 from DisTrad applied to TR1536 data versus observed TR192. (b) T̂R192 from UniTrad applied to TR1536 data versus observed TR192. (c) T̂R24 from

DisTrad applied to TR96 data versus observed TR24, and (d) T̂R24 from UniTrad applied to TR96 data versus observed TR24. Line indicates perfect agreement.
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Fig. 2 (continued).
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Table 3

Surface energy balance statistical results between using subpixel estimates

of TR at 192- and 24-m resolution (i.e., T̂R192 and T̂R24) from DisTrad and

UniTrad versus using observed values (i.e., TR192 and TR24) in DisALEXI

for the four cases described in the text

Case/flux DisTrad UniTrad

RMSE

(W m� 2)

R2 RMSE/r RMSE

(W m� 2)

R2 RMSE/r

1/Rn 10 0.43 0.83 13 0.03 1.08

2/Rn 8 0.59 0.67 11 0.25 0.92

3/Rn 12 0.57 0.67 12 0.56 0.67

4/Rn 10 0.66 0.55 9 0.72 0.5

1/G 4 0.99 0.12 6 0.98 0.18

2/G 3 0.99 0.11 5 0.98 0.15

3/G 5 0.99 0.11 5 0.99 0.11

4/G 5 0.99 0.11 4 0.99 0.09

1/H 24 0.64 0.62 37 0.22 0.95

2/H 21 0.72 0.54 31 0.43 0.79

3/H 32 0.61 0.64 33 0.57 0.66

4/H 28 0.67 0.56 26 0.72 0.52

1/LE 29 0.63 0.41 44 0.59 0.63

2/LE 25 0.87 0.36 36 0.74 0.51

3/LE 38 0.80 0.46 39 0.78 0.47

4/LE 34 0.83 0.41 31 0.86 0.37
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estimated from Eq. (4) are equal to the observed 96-m TR
value).

As mentioned earlier, UniTrad and DisTrad are applied to

the following cases:

Case 1 Disaggregate TR from 1536-m pixel resolution to

192 m.

Case 2 Disaggregate TR from 768-m pixel resolution to

192 m.

Case 3 Disaggregate TR from 192-m pixel resolution to

24 m.

Case 4 Disaggregate TR from 96-m pixel resolution to

24 m.

Cases 1 and 2 bracket TR pixel resolutions of MODIS

and AVHRR (f 1 km) and apply DisTrad to estimate TR at

the resolution of MODIS-derived NDVI product (250 m).

Cases 3 and 4 apply DisTrad at the Landsat 5 (120 m),

ASTER (90 m), and Landsat 7 (60 m) TR pixel resolutions

to estimate TR at the resolution of Landsat and ASTER-

derived NDVI product of 30- and 15-m pixel resolution,

respectively.

The curves resulting from application of Eq. (1) for cases

1–2 and 3–4 are illustrated in Fig. 1a and b, respectively,

overlaid on a pixel-by-pixel comparison of NDVI and TR at

the base resolutions (i.e., 24 and 192 m). The linear form of

Eq. (1) was more suitable for cases 1 and 2, while the

quadratic equation gave the lowest error for cases 3 and 4.

Most of the outliers in the TR–NDVI space for the 192-m

resolution data are pixels containing a significant fraction of

water, which have NDVI]0. For the 24-m resolution data,

there is considerably more scatter with outliers covering the

full range in TR–NDVI space; hence, the TR–NDVI rela-

tionship is not well defined. Note that the curves generated

using Eq. (1) when applied to the coarser resolution data for

cases 1 and 2 (Fig. 1a) and cases 3 and 4 (Fig. 1b) are very

similar, indicating that pixel resolution did not significantly

affect the DisTrad procedure.

The scatter is greatly reduced at 96-m resolution (Fig.

1c), thus obtaining a reasonable regression equation via

Eq. (1). The large reduction in scatter in TR–NDVI space

from 24- to 96-m resolution is probably due to differ-

ences in the length scales of variability in surface mois-

ture, vegetative cover, and land use, although the

attenuation of temporal fluctuations in TR through the

spatial averaging may also be contributing (Seguin et al.,

1999). However, at pixel resolutions >10 m, observations

(Lagouarde, Duberton, & Moreau, 1997; Seguin et al.,

1999) indicate that temporal fluctuations in TR are rela-

tively minor (i.e., 2 jC ] over a 2–10 min period) and

change little with aggregation to coarser resolutions. With

the airborne TR data being used in this analysis having

pixel resolutions >20 m, and acquired in less than 5 min,

the attenuation in temporal fluctuations in TR with coarser

resolution data is not a major contributing factor to the

reduced scatter in TR–NDVI space observed in aggrega-

tion from 24 to 96 m.
In Table 2, the statistical results for DisTrad versus

UniTrad approach indicates that the DisTrad procedure is

effective in providing disaggregated surface temperatures

for cases 1 and 2, the MODIS resolutions, but not any

improvement over UniTrad approach at the Landsat/ASTER

resolutions. A comparison of T̂R192 and T̂R24 from DisTrad

and UniTrad procedures applied to cases 1 and 4 versus

observed TR illustrates the performance of the two ap-

proaches at the lowest and highest resolution conditions

(Fig. 2). For case 1 (Fig. 2a and b), DisTrad significantly

outperforms UniTrad approach in capturing the spatial

variability in TR at f 200 m with the coarser resolution

data. On the other hand, for case 4 (Fig. 2c and d), there is

no clear advantage in using DisTrad over UniTrad; in fact,

the figures suggest that UniTrad actually does slightly better

in estimating f 25 m TR.

These results are consistent with the spatial scaling

analysis of French (2001) who showed that spatial variance

in TR remains relatively high for pixel resolutions ]101 m,

while a dramatic decrease in the spatial variance in TR and

in the ability to define field boundaries in this same image

occurs at pixel resolutions k200–400 m. Therefore, Uni-

Trad is bound to perform poorly when applied to TR pixel

resolutions k400 while gives results similar to DisTrad at

resolutions ]101 m. This 200–400 m length scale or

resolution turns out to be the typical field size, which for

this region was either grassland with leaf area index (LAI)

generally ranging from f 2 to 4 or harvested winter wheat

stubble/tilled bare soil with LAIf 0. These are highly

contrasting surface conditions both in vegetation cover

and in TR (French et al., 2000a, 2000b).
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4.2. Surface energy balance estimation using DisALEXI

An analysis similar to the subpixel surface temperature

retrieval was performed with the surface energy balance

output for cases 1–4 using DisALEXI with TR observations

and estimated TR from DisTrad and UniTrad methods.

Values of RMSE, R2, and the ratio RMSE/r for the four

energy balance components, namely, net radiation (Rn), soil

heat flux (G), sensible heat flux (H), and latent heat flux

(LE), are listed in Table 3.

The results summarized in Table 3 are similar to the

findings with TR, namely, that there is an advantage in

employing the DisTrad procedure for estimating subpixel

surface energy fluxes over this landscape at the MODIS/

AVHRR TR and NDVI resolutions (cases 1 and 2). How-

ever, there is marginal to essentially no benefit in using

DisTrad in comparison to the simple UniTrad technique at

the Landsat/ASTER TR and NDVI resolutions (cases 3 and

4). In addition, the RMSE values for H and LE for cases 3

and 4 with either TR disaggregation technique start to

approach the f 50 W m� 2 model-measurement uncertainty

and therefore have marginal benefit in providing reliable

within-field (i.e., f 101-m resolution) surface heat flux

maps over this particular landscape. Hence, the DisTrad

procedure applied to TR–NDVI data would have the great-

est utility for disaggregation of TR pixels with resolutions

>200–400 m. This result is also supported by the flux-

scaling work of French (2001) who found that at pixel

resolutions aggregated beyond f 200 m, errors in the

modeled heat fluxes become significant and difficult to

relate to heat fluxes at finer resolutions. Below this length

W.P. Kustas et al. / Remote Sensi
Table 4

Mean, standard deviation, skewness and kurtosis of H and LE differences between

at 192- and 24-m resolution (i.e., T̂R192 and T̂R24) from DisTrad and UniTrad pro

Case/flux DisTrad

Mean

(W m� 2)

Standard

deviation

(W m� 2)

Skewnessa

(� )

Kurtos

(� )

1/H 3 24 � 1.03 12.5

2/H f 0 21 � 1.36 21.3

3/H 3 31 1.66 21.4

4/H 2 29 1.92 25.6

1/LE � 3 29 1.03 12.3

2/LE f 0 25 1.46 21.6

3/LE � 3 38 � 1.18 16.1

4/LE � 2 34 � 1.39 19.1

aEquation for computing skewness of variable X with mean, X
�
:

skewness ¼

Xn
i¼1

ðXi ��
X Þ3

n
r3

:

bEquation for computing kurtosis of variable X with mean, X
�
:

kurtosis ¼

Xn
i¼1

ðXi ��
X Þ4

n
r4

:

scale, the disaggregation of TR with DisTrad does not show

a significant advantage over assuming a uniform subpixel

TR distribution for heat flux calculations.

A final statistical analysis is performed for the turbulent

heat fluxes, H and LE, which had the largest RMSE

values, by computing and comparing the probability

density functions (pdfs) of differences between DisALEXI

output using the observed versus estimated TR under the

four cases (i.e., modeled H and LE using the observed or

‘‘actual’’ TR minus modeled H and LE using TR derived

from DisTrad and UniTrad approaches). Besides the mean

and standard deviation, the skewness and kurtosis (third

and fourth moments about the mean normalized by r; see
Table 4) of the pdfs are compared to a normal distribu-

tion, which has a skewness = 0 and a kurtosis = 3. For

cases 1 and 2, the pdfs of H and LE differences are

illustrated in Fig. 3, while the pdfs of H and LE differ-

ences for cases 3 and 4 are illustrated in Fig. 4 using both

the DisTrad and UniTrad approach. The mean, standard

deviation, skewness, and kurtosis values for the pdfs are

listed in Table 4.

The pdfs of the H and LE differences using DisTrad and

UniTrad plotted for cases 1 and 2 (Fig. 3) indicate a

significantly narrower distribution using DisTrad compared

to UniTrad, while for cases 3 and 4 (Fig. 4), the pdfs look very

similar. The mean of the differences or bias is small for all

four cases with values F 5 W m� 2. The r values in Table 4

are essentially the same as the RMSE values listed in Table 3,

indicating generally a lower variance in the heat flux differ-

ences using DisTrad compared to UniTrad. The skewness

values using DisTrad range between F 2 (see Table 4),
using observed values (i.e., TR192 and TR24) versus subpixel estimates of TR
cedures in DisALEXI for the four cases described in the text

UniTrad

isb Mean

(W m� 2)

Standard

deviation

(W m� 2)

Skewness

(� )

Kurtosis

(� )

� 5 37 � 0.95 7.6

� 3 31 � 0.85 8.1

1 33 0.44 15.7

1 26 0.88 24.9

3 44 0.56 6.3

2 36 0.50 7.1

� 2 39 � 0.43 12.3

� 2 31 � 0.73 18.9



 

 

 

 
 

  
 

Fig. 3. The pdfs of the differences in H and LE for cases 1 and 2, where T̂R192 from DisTrad and UniTrad is used in DisALEXI and contrasted to using

observed, TR192, in computing the heat fluxes with DisALEXI.
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whereas the kurtosis departs significantly from the value from

a normal distribution (i.e., kurtosis = 3) ranging instead

between 10 and 25. The large kurtosis values using DisTrad,

with most f 20, indicates a very narrow distribution, and as

can be seen from Figs. 3 and 4, these differences in H and LE

primarily fall within F 50 W m� 2. With UniTrad, the

skewness values are closer to a normal distribution with a

range of F 1. The kurtosis values indicate a narrower than

normal distribution, but the values are less than 10 for cases 1

and 2 and are even slightly lower than the kurtosis values

associated with DisTrad for cases 3 and 4.

In summary, the pdfs of H and LE differences using

DisTrad for estimating TR versus using observed TR are

generally narrower (i.e., higher kurtosis values) than with

the UniTrad approach, particularly for cases 1 and 2 (see

Fig. 3). This, together with the statistical results summarized

in Tables 2–4, suggest that for cases 1 and 2, the DisTrad

procedure provides markedly better estimates of subpixel TR
values compared to the UniTrad approach, while there is

little, if any, improvement for cases 3 and 4. In addition, the

higher skewness in the pdfs using DisTrad compared to

UniTrad suggests that more asymmetry exists in the DisTrad

distributions. More asymmetry, but a small bias (Table 4), in

the heat flux differences using DisTrad versus UniTrad
indicates that a greater number of modeled fluxes with

estimated subpixel TR values from DisTrad differ signifi-

cantly, being either markedly higher or lower than values

computed with actual TR.

For H differences (i.e., modeled H using the observed

TR minus modeled H using TR derived from DisTrad and

UniTrad approaches), the skewness is < 0 using either the

DisTrad and UniTrad approach for cases 1 and 2, whereas

the opposite holds true (i.e., skewness>0) for cases 3 and

4. This result must be indicative of the relative influence of

the warm and cool patches at the two base pixel resolu-

tions, namely, f 200 and f 25 m. In disaggregation of TR
from f 1000 to f 200 m (cases 1 and 2), the negative

skewness for H differences suggests that the disaggrega-

tion procedures are unable to detect cooler subpixel

patches. The opposite appears to hold true in disaggrega-

tion of TR from f 100 to f 25 m (cases 3 and 4); the

positive skewness for H differences suggests that there are

warmer subpixel patches not being detected by the disag-

gregation procedures.

These results appear to be in qualitative agreement with

French (2001). He found that at pixel resolutions k200–

400 m, TR and NDVI data are a composite of warmer bare

soil and cooler vegetated fields. Consequently, the disag-



   

 

    

 

   

 

 

 

Fig. 4. The pdfs of the differences in H and LE for cases 3 and 4, where T̂R24 from DisTrad and UniTrad is used in DisALEXI and contrasted to using observed,

TR24, in computing the heat fluxes with DisALEX.
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gregation of TR from these mixed pixels has a tendency to

overestimate subpixel TR values for some of the cooler

patches in the image. On the other hand, below this

threshold pixel resolution, French (2001) found that field

boundary discrimination is preserved, and hence the

warmer and cooler patches are more closely associated

with the low cover/bare soil and vegetated fields, respec-

tively. However, within these field boundaries, French

(2001) still found significant variations in TR due to

variability in vegetation cover and surface moisture con-

ditions. For the particular scene analyzed here, it appears

that the disaggregation procedures have a tendency to

underestimate subpixel TR values for some of the warmer

patches in the image.
5. Conclusions

A procedure for disaggregating radiometric surface tem-

perature TR (i.e., DisTrad approach) in order to derive a

subpixel distribution at f 25- and f 200-m resolution is

evaluated using airborne imagery collected over the South-

ern Great Plains. The estimated surface temperatures at
these two resolutions are similar to NDVI pixel resolutions

from MODIS and ASTER/Landsat satellite sensors.

The comparisons with actual TR data indicate that Dis-

Trad can provide subpixel TR values at the MODIS NDVI

pixel resolution within f 1.5 jC uncertainty, but at the

ASTER/Landsat NDVI resolution, subpixel estimates from

DisTrad are not any more reliable than assuming a uniform

subpixel TR field (i.e., UniTrad method). This result is

consistent with an independent spatial scaling study show-

ing that the greatest loss of TR spatial variability came at

pixel resolutions k200–400 m, the typical dimension of the

agricultural field boundaries (French, 2001).

The estimated and observed TR values were used with the

Disaggregated Atmosphere Land Exchange Inverse (DisA-

LEXI) model for estimating heat fluxes. Comparisons of

model output using DisTrad and UniTrad estimates of TR
with actual or observed TR also indicated that the utility of

DisTrad is greatest at the MODIS NDVI resolution. The

errors, as quantified by RMSE, in sensible and latent heat

flux computations using disaggregated versus observed sur-

face temperatures range from 20 to 30 W m� 2. These errors

are well within typical uncertainty in modeled and measured

heat fluxes reported to bef 50Wm� 2 (Twine et al., 2000).
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Although these preliminary results pertain strictly to the

landscape and environmental conditions that existed in this

region, much of the Southern Great Plains has agricultural

field dimensions similar to this experimental site, and,

consequently, this disaggregation procedure could be ap-

plied regionally for estimating field scale ET. In fact, based

on the results of Townshend and Justice (1988), application

of DisTrad to 1-km resolution TR to achieve MODIS NDVI

resolution (250 m) TR could provide significantly more

detailed information concerning the impact of land trans-

formations on the surface energy balance and ET. With the

use of MODIS combined with GOES, and the DisTrad and

DisALEXI modeling schemes, there is much greater poten-

tial for routine ET monitoring at the 102-m resolution than

with ASTER or Landsat because of the frequency of GOES

and MODIS coverage. Future work will involve testing this

disaggregation procedure in concert with DisALEXI using

satellite data collected over a variety of landscapes and

under a range of environmental conditions.
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